Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Abstract Physical experiments and numerical simulations have observed a remarkable stabilizing phenomenon: a background magnetic field stabilizes and dampens electrically conducting fluids. This paper intends to establish this phenomenon as a mathematically rigorous fact on a magnetohydrodynamic (MHD) system with anisotropic dissipation in$$\mathbb R^3$$ . The velocity equation in this system is the 3D Navier–Stokes equation with dissipation only in the$$x_1$$ -direction, while the magnetic field obeys the induction equation with magnetic diffusion in two horizontal directions. We establish that any perturbation near the background magnetic field (0, 1, 0) is globally stable in the Sobolev setting$$H^3({\mathbb {R}}^3)$$ . In addition, explicit decay rates in$$H^2({\mathbb {R}}^3)$$ are also obtained. For when there is no presence of a magnetic field, the 3D anisotropic Navier–Stokes equation is not well understood and the small data global well-posedness in$$\mathbb R^3$$ remains an intriguing open problem. This paper reveals the mechanism of how the magnetic field generates enhanced dissipation and helps to stabilize the fluid.more » « less
- 
            Free, publicly-accessible full text available April 1, 2026
- 
            Free, publicly-accessible full text available January 21, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            Abstract Hyperbolic Navier–Stokes equations replace the heat operator within the Navier–Stokes equations with a damped wave operator. Due to this second-order temporal derivative term, there exist no known bounded quantities for its solution; consequently, various standard results for the Navier–Stokes equations such as the global existence of a weak solution, that is typically constructed via Galerkin approximation, are absent in the literature. In this manuscript, we employ the technique of convex integration on the two-dimensional hyperbolic Navier–Stokes equations to construct a weak solution with prescribed energy and thereby prove its non-uniqueness. The main difficulty is the second-order temporal derivative term, which is too singular to be estimated as a linear error. One of our novel ideas is to use the time integral of the temporal corrector perturbation of the Navier–Stokes equations as the temporal corrector perturbation for the hyperbolic Navier–Stokes equations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
